
PROCEEDINGS OF THE IEEE - SUPPLEMENTARY MATERIAL 1

The Quantum Tortoise and the Classical Hare:
When Will Quantum Computers Outpace Classical

Ones and When Will They Be Left Behind?
Sukwoong Choi, William S. Moses, Neil Thompson

III. HARDWARE DIFFERENCES

A. Trends in the number of qubits in quantum computers

101

102

103

104

105

106

107

20
20

20
21

20
22

20
23

20
24

20
25

20
26

20
27

20
28

20
29

20
30

20
31

20
32

20
33

20
34

20
35

20
36

20
37

20
38

20
39

20
40

20
41

20
42

20
43

20
44

20
45

Year

P
hy

si
ca

l Q
ub

its

Data Type Data Roadmap Extrapolated values

Physical Qubits
IonQ Qubit Progress

Fig. S1: IonQ’s Projected Physical Qubit Growth: Plot
showing the number of physical qubits over time, with real
data (Red), roadmap (Blue), and extrapolated values (Green)
based on an exponential growth model.

IonQ’s trapped-ion quantum computing approach highlights
a unique trade-off between high qubit connectivity and slower
gate speeds. Unlike superconducting qubits, which often rely
on nearest-neighbor connectivity, trapped-ion systems allow
any qubit within the same trap to interact directly with any
other qubit. This high connectivity simplifies the implementa-
tion of quantum circuits, particularly for algorithms requiring
extensive qubit interactions or complex entanglement, but
comes at the cost of slower gate speeds. For instance, a study
demonstrated entangling gate operations with durations as
short as 15 microseconds (15 µs) [1]. While this is a significant
achievement, it is still slower than the gate speeds typically
achieved in superconducting systems.

Extrapolating from IonQ’s roadmap, as detailed in Figure
S1, suggests that exponential growth in the number of physical
qubits could potentially lead to approximately 103 qubits by
2030 and 106 by 2040. Achieving these milestones, however,
will require overcoming significant technical challenges, in-
cluding improving gate speeds, minimizing error rates, and
maintaining coherence among qubits in larger systems. These

challenges highlight the broader difficulties of scaling quantum
computing technologies, regardless of architecture.

C. The speed difference between classical & quantum com-
puters

Table S1 expands on the specifications discussed in Section
C of the main article. It estimates the quantum performance
gap by comparing the cost per serial and parallel operations,
offering a comprehensive view of the differences between
classical and quantum systems.

PROCEEDINGS OF THE IEEE - SUPPLEMENTARY MATERIAL 2

Classical Quantum Ratio

5GHz1 2MHz2 103 − 104×Speed
(serial cost) + error-correction overhead [100×] 105 − 106×

Cost 1014 FLOPS/$3 108 gate ops/$4 106×
+ error-correction overhead [100×] 108×

TABLE S1: Calculation of quantum performance gap, both from cost per serial operation and cost per (parallel)
operation.

IV. ALGORITHMIC DIFFERENCES

Table S2 draws on the analysis from [5] to list the com-
putational complexities of classical algorithms, for use in
interpreting Figure 5 for each problem.

Classical Algorithm

Exp 3-Graph / 4-Graph Coloring (NP)
Subset-Sum (NP)
Vertex Cover (NP)
Set-Covering (NP)
Maximum Cut (NP)
The Traveling-Salesman Problem (NP)
Enumerating Maximal Cliques (NP)
n-Queens (NP)
Graph Edit Distance Computation (NP [6])
Turnpike
NFA to DFA Conversion
Dependency Inference
BCNF Decomposition
4NF Decomposition
Discovering Multivalued Dependencies
Finding Frequent Item Sets
Motif Search
Minimum Wiener Connector
Change-Making
Median String
Factoring

n4 Longest Path on Interval Graphs
Determinant using Integer Arithmetic

n3 Grobner Bases
Maximum-weight Matching
MDPs for Optimal Policies
Link Analysis (Indegree)
Integer Relation

n2.38 Parsing

n2.188 Transitive Reduction

1Venten et al. (2022) [2]
2Calculated as gate operations per second from single and multi-qubit gate

timings. On a Google machine single qubit gate takes 20ns, with a two qubit
controlled Z gate taking 32ns [3]. On an IBM machine, gate time averages
are 555ns [4].

3https://en.wikipedia.org/wiki/FLOPS
4https://www.ibm.com/quantum/access-plans

n2 log n
Nash Equilibria
Entity Resolution
2-D Elliptic Partial
3-D Elliptic Partial
All-pairs Shortest Path

n2 Factorization of Polynomials over Finite Fields
Cryptanalysis of Linear Feedback Shift Registers
Translating Abstract Syntax Trees into Code
Digraph Realization
Sequence to Graph Alignment (Linear Gap Penalty)
Rod Cutting
Frequent Words

n2/ log n Sequence Alignment
n2/ log2 n Longest Common Subsequence

n1.5 Max Flow

n1.188 Maximum Cardinality Matching

n1.186 Matrix Multiplication

n1.185 Linear Programming

n log n log log Greatest Common Divisor

n log n
LU Decomposition
Multiplication
Discrete Fourier Transform (QEXP)
Cyclopeptide Sequencing
Comparison Sorting
Line Segment Intersection
Convex Hull
Closest Pair Problem
SDD Systems Solvers
Polygon Clipping
Nearest Neighbor Search
Voronoi Diagrams
Delaunay Triangulation
Weighted Activity Selection

n log n
Single-interval Scheduling Maximization
(Unweighted)

n log n log log Greatest Common Divisor

n log log n
Shortest Path
Duplicate Elimination

https://en.wikipedia.org/wiki/FLOPS
https://www.ibm.com/quantum/access-plans

PROCEEDINGS OF THE IEEE - SUPPLEMENTARY MATERIAL 3

n
Line Clipping
Integer Sorting
kth Order Statistic
Linear System of Equations
Strongly Connected Components
Minimum Spanning Tree
String Search
Joins
Cycle Detection
Generating Random Permutations
Minimum value
All Permutations
Huffman Encoding
Constructing Eulerian Trails in a Graph
Line Drawing
Topological Sorting
DFA Minimization
Lowest Common Ancestor
De Novo Gene Assembly
Disk Scheduling
Lossy Compression
Stable Marriage
Maximum Subarray
Constructing Suffix Trees
Longest Palindrome Substring
Matrix Factorization for Collaborative Filtering
Point in Polygon
Polynomial Interpolation
Deadlock Avoidance
Page Replacements
Recovery

log n
Mutual Exclusion
Self-Balancing Trees Insertion
Self-Balancing Trees Deletion
Self-Balancing Trees Search

TABLE S2: Classical Runtime of Algorithms by Input Size:
Classical runtime of various computer science problems, with
n taken as the conventional input size for the problem.

V. SENSITIVITY TESTING

To get the answers in the previous section, we estimated
several parameters (speed difference, error correction over-
head, etc.) and evaluation metrics (cost per serial operation and
cost per parallel operation). In this section we consider how
much our conclusions change if we assume more optimistic
(or pessimistic) estimates.

A. Optimistic version

Here we consider how the thresholds for quantum economic
advantage change if we make more optimistic assumptions for
the performance of quantum computers, resulting in perfor-
mance gap of 104. For example, this might arise if:

1) error correction codes improve,
2) quantum hardware produces fewer errors,
3) the costs of building and operating quantum computers

falls more rapidly than classical computers

This optimistic version is shown at the middle of Figure 5.
The overall results are qualitatively similar to the base case,
but certain problems (e.g. when classical is n3 and quantum is
n), become attractive for problem sizes of only a few hundreds,
that could be quite business-relevant.

B. Pessimistic version

Here we consider what thresholds for quantum economic
advantage that we would predict if we instead made more
pessimistic assumptions5 that lead to a quantum performance
gap of 108. This might arise if:

1) error correction becomes harder as systems get larger,
2) classical computers improve their price-performance

faster than classical computers,
3) the connectivity issues for quantum computers make

each logical qubit require more effective classical qubits
This pessimistic version is shown at the bottom of Figure 5.

The overall results are again qualitatively similar to the base
case, but now require problem sizes in the hundreds of millions
or billions, putting many everyday business applications out
of reach.

VI. LIMITATIONS TO THE ANALYSIS

A. Contextualizing Problem Size

It is important to note that these problem sizes n vary
on the context of the problem. As a result, a very large n
may be common in some problems, or uncommon in others.
For example, we describe the runtime of Shor’s algorithm as
polynomial in n, where n is used to denote the number of
bits of the value being factored. Therefore, a value of n = 20,
denotes factoring a number of size 220 ≈ 106. Thus if the
using the analysis above you derived a threshold problem size
of n∗ = 20 in bits, that would correspond to 2n

∗
being the

threshold problem size in terms of the value of the integer
being factored.

Understanding this conversion may often be important to
practitioners. As an example, while the n∗ = C2 = 1012 of
may appear too large for most use cases to search through a list
of size n, Grover’s algorithm may be used to search through an
exponentially large “list” of possible solutions to a problem.
For example, one could apply Grover’s algorithm to perform
an exhaustive search over all n = 2m settings of a satisfiability
problem of m variables. Grover’s quadratic speedup on such
a search problem would then result in 2m/2 evaluations of
the search function [7]. The threshold problem size above
would remain correct at n∗ = 1012, that would correspond
to a threshold number of variables of m∗ = log2 n

∗ ≈ 40.

B. Precision

When analyzing the very small minimum problem sizes
like in an algorithmic improvement from exponential time to
polynomial, our order-of-magnitude analysis of the expected

5This does not consider improvements in algorithms, that would lead to
problems changing complexity classes, such as if quantum computers could
be efficiently simulated.

PROCEEDINGS OF THE IEEE - SUPPLEMENTARY MATERIAL 4

problem size becomes less accurate. This is because the ad-
ditional constant overheads within the algorithms themselves,
including constructing the correct quantum gateset or classical
function, becomes more crucial. For example, when analyzing
Shor’s algorithm under our order-of-magnitude framework
with an overhead constant C = 106, we find that factor-
ing numbers of only a few bits will achieve speedup on a
quantum computer. To determine more than rough estimates
in these regime, significant consideration must be made for the
the quantum-gate overhead constants, as well as lower-order
constant overheads for the classical algorithms.

C. Quantum RAM / Data Loading

Thus far in our analysis, we have implicitly assumed that
computing time will be the bottleneck to any computational
task and thus ignored the time for loading the data. But this
assumption can be wrong if the time to load the data is
significantly longer than the time needed for the calculation. In
these cases, the bottleneck will be the loading time of the data.
This problem can arise particularly for quantum computers
because of how they represent data or need to convert classical
data into a quantum format.

In classical computing, doing an operation on one bit of
information requires loading (at most) one bit from memory.
Therefore, the cost of loading data is (at most) proportional
to the number of operations. And thus, data loading costs
cannot change the asymptotic scaling of classical algorithms.6

By contrast, in quantum computing, each operation acts on
a register of qubits, whose superposition and entanglement
might require exponentially many bits of classical information
to construct. In this case, the loading operations needed to
build up the superpositions could be much greater than the
operations needed for a calculation. In particular, if the amount
of information needed to construct the superposition grows as
the problem size grows, then the scaling of loading data could
be worse than that of the calculation itself.

“Quantum RAM (qRAM)” [8] aims to provide a way of
storing quantum information for later use that does not require
conversion between classical and quantum formats, and hence
avoids making the load operations too expensive.

Thus, loading data on a quantum computer can itself be the
limiting factor on the scaling of a quantum algorithm if the
data usage computations scale less well than the calculations
on that data. It can also be a bottleneck if the data is stored in
classical format, in which case there may be a computational
penalty needed to convert it into a quantum-machine readable
format. In this case, the time complexity of loading or storing
data could be significantly worse than linear.

In practice, the time needed for loading thus becomes a
lower bound on how well the quantum algorithm can do. For
example, as we discussed with the DNA database example,
an algorithm with a time complexity of O(

√
n) but where

data loading is linear O(n) will be limited by data loading.
As such, an apparent computational benefit that a quantum
algorithm has, might be erased by this effect.

6Assuming efficient “random-access” implementations that don’t thrash,
etc.

While much of our discussion focuses on superconduct-
ing qubits and IBM quantum computers, it is important to
acknowledge that other QPU modalities, such as ion-trapped
qubits, also play a significant role in the landscape of quantum
computing architectures. Ion-trapped qubits, for instance, have
significantly lower gate speeds than superconducting qubits,
yet they benefit from lower overhead in terms of physical-to-
logical qubit ratios. Each architecture has unique trade-offs,
affecting connectivity and scalability; for example, ion-trapped
systems offer higher connectivity among qubits compared
to the more limited connectivity seen in many supercon-
ducting systems. These architectural variations contribute to
differences in computational efficiency and error correction
requirements.

D. Qubit connectivity

In our analysis so far, we have assumed that, once the
error-correction overhead is paid, physical qubits can perfectly
represent logical qubits. This assumption is optimistic be-
cause, in many cases, real qubits have limited connectivity
compared to fully connected theoretical models; however,
connectivity depends heavily on the QPU architecture. For
instance, superconducting qubits in IBM’s QPUs typically
feature nearest-neighbor connectivity, where each qubit can
only directly interact with a limited set of adjacent qubits.
This restricted connectivity can increase circuit complexity
for algorithms requiring interactions between distant qubits.
Trapped-ion qubits, on the other hand, generally provide
connectivity to other qubits in the common trap. While we
do not account for it here, if the implied connectivity penalty
for different architectures are known, they can be incorporated
into this framework as an increase in the time complexity
of the quantum algorithm on that hardware. Sometimes this
distinction can be mitigated by clever quantum compilers that
select and re-route computations to ensure necessary qubits
are adjacent [9], [10]. However, solving for the optimal qubit
assignment has been shown to be NP-complete [11], with
approximation algorithms, like dynamic programming, being
practical solutions. Such approximations can result in orders-
of-magnitude additional costs [11].

Error rates also impact algorithm performance. Supercon-
ducting qubits, such as those in IBM’s QPUs, have average
single-qubit error rates around 0.1% and two-qubit error rates
near 1%, often requiring substantial error correction. Although
trapped-ion qubits generally have lower single-qubit error
rates, their slower gate speeds can limit their advantage.
Together, these differences in connectivity and error rates influ-
ence the feasibility of certain quantum algorithms, especially
those requiring high-fidelity entanglement or intensive qubit
interactions.

E. Hardware Variability Across QPU Modalities

While much of our discussion focuses on superconduct-
ing qubits and IBM quantum computers, it is important to
acknowledge that other QPU modalities, such as ion-trapped
qubits, also play a significant role in the landscape of quan-
tum computing architectures. Ion-trapped qubits have both

PROCEEDINGS OF THE IEEE - SUPPLEMENTARY MATERIAL 5

advantages and disadvantages compared with superconducting
qubits. They benefit from lower error correction overhead (i.e.
lower physical-to-logical qubit ratios) and better connectiv-
ity between qubits, but they also have significantly lower
gate speeds than superconducting qubits. Collectively, these
differences mean that ion-trapped qubits will get quantum
economic advantage at different times for different problem
sizes than superconducting qubits (as explored in the online
appendix). Other architectures can be similarly analyzed with
the Tortoise-Hare framework, by substituting in their respec-
tive features.

Another important caution relates to the exponential growth
in the number of physical qubits shown in many QPU hard-
ware roadmaps. Ensuring coherence, error correction, and
sufficient qubit connectivity presents challenges that may grow
in complexity with qubit count. This may make the growth in
effective logical qubits substantially slower than the growth
in physical qubits. Thus, these projections by QPU providers
should be interpreted with caution.

REFERENCES

[1] S. A. Moses et al., “Universal control of a single trapped ion qubit with
infinite coherence,” arXiv preprint arXiv:2305.03450, 2023.

[2] M. Velten, R. Schöne, T. Ilsche, and D. Hackenberg, “Memory
Performance of AMD EPYC Rome and Intel Cascade Lake SP Server
Processors,” in Proceedings of the 2022 ACM/SPEC on International
Conference on Performance Engineering, vol. 1, no. 1. New
York, NY, USA: ACM, apr 2022, pp. 165–175. [Online]. Available:
https://dl.acm.org/doi/10.1145/3489525.3511689

[3] Quantum AI, Google, “Quantum computer datasheet,” 2021, last
accessed: 2022-09-12. [Online]. Available: https://quantumai.google/
hardware/datasheet/weber.pdf

[4] IBM Quantum Research Blog, “Eagle’s quantum performance progress,”
March 2022, accessed: 2024-12-04. [Online]. Available: https://www.
ibm.com/quantum/blog/eagle-quantum-processor-performance

[5] Y. Sherry and N. C. Thompson, “How fast do algorithms improve?[point
of view],” Proceedings of the IEEE, vol. 109, no. 11, pp. 1768–1777,
2021.

[6] Z. Zeng, A. K. Tung, J. Wang, J. Feng, and L. Zhou, “Comparing
stars: On approximating graph edit distance,” Proceedings of the VLDB
Endowment, vol. 2, no. 1, pp. 25–36, 2009.

[7] A. Montanaro, “Quantum algorithms: an overview,” npj Quantum Infor-
mation, vol. 2, no. 1, pp. 1–8, 2016.

[8] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum random access
memory,” Physical review letters, vol. 100, no. 16, p. 160501, 2008.

[9] M. G. Pozzi, S. J. Herbert, A. Sengupta, and R. D. Mullins, “Using
reinforcement learning to perform qubit routing in quantum compilers,”
ACM Transactions on Quantum Computing, vol. 3, no. 2, may 2022.
[Online]. Available: https://doi.org/10.1145/3520434

[10] A. Cowtan, S. Dilkes, R. Duncan, A. Krajenbrink, W. Simmons,
and S. Sivarajah, “On the Qubit Routing Problem,” in 14th
Conference on the Theory of Quantum Computation, Communication
and Cryptography (TQC 2019), ser. Leibniz International Proceedings
in Informatics (LIPIcs), W. van Dam and L. Mancinska, Eds.,
vol. 135. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2019, pp. 5:1–5:32. [Online]. Available: http:
//drops.dagstuhl.de/opus/volltexte/2019/10397

[11] M. Y. Siraichi, V. F. d. Santos, C. Collange, and F. M. Q. Pereira,
“Qubit allocation,” in Proceedings of the 2018 International Symposium
on Code Generation and Optimization, ser. CGO 2018. New York,
NY, USA: Association for Computing Machinery, 2018, p. 113–125.
[Online]. Available: https://doi.org/10.1145/3168822

https://dl.acm.org/doi/10.1145/3489525.3511689
https://quantumai.google/hardware/ datasheet/weber.pdf
https://quantumai.google/hardware/ datasheet/weber.pdf
https://www.ibm.com/quantum/blog/eagle-quantum-processor-performance
https://www.ibm.com/quantum/blog/eagle-quantum-processor-performance
https://doi.org/10.1145/3520434
http://drops.dagstuhl.de/opus/volltexte/2019/10397
http://drops.dagstuhl.de/opus/volltexte/2019/10397
https://doi.org/10.1145/3168822

	Hardware Differences
	Trends in the number of qubits in quantum computers
	The speed difference between classical & quantum computers

	Algorithmic Differences
	Sensitivity testing
	Optimistic version
	Pessimistic version

	Limitations to the analysis
	Contextualizing Problem Size
	Precision
	Quantum RAM / Data Loading
	Qubit connectivity
	Hardware Variability Across QPU Modalities

	References

