
Appendix: Estimation of Compute Times as

Functions of Problem Sizes

In [1], Fig. 3 shows estimates of compute resources, in time and number
of physical qubits, for the CAS(N ,N) problems solved by the three different
methods: CASCI as the classical method, and the two quantum computational
methods based on Trotterization and with further sparse qubitization. The
authors then extrapolated these estimates to curves that approximate the scaling
of compute resources of the three different methods.

Here, we recall Fig. 3 in [1],

Now, we wish to estimate the approximated functions that describe those
curves (particularly, Trotterization and CASCI).

Let T be the compute time, and N be the number of orbitals, we then wish
to find f(·) such that T ≈ f(N).

Since the x- and y-axis are log-scaled, we have

x = log2 N, y = log10 T (1)

1

1 Trotterization

For Trotterization, y is a linear function of x, passing through roughly (2, 5),
(3, 6.5) and (5.1, 11). Hence, solving for the linear function with these points
numerically, we have

y = 1.97x+ 0.8. (2)

This implies

log10 T = 1.97 log2 N + 0.8, (3)

=⇒ T= (100.8)101.97 log2 N . (4)

Since 10log2 N = N log2 10,

T = (100.8)N1.97 log2 10, (5)

≈ 6.31×N6.54, (6)

which is a polynomial growth of order 6.54. When we calculate the R-
Squared for this fitting, we have about 0.97. The Python code for this estimation
is attached at the end of this section.

2 Desktop CASCI

We can show that a linear function in the log-scaled plot is equivalent to a
polynomial in the regular plot, in which the quantum computational methods
all correspond to as seen in the previous sections.

For Desktop CASCI, the three estimated points see a growth in increment
with problem size, suggesting T growing super-polynomially with N . Consid-
ering this pattern, we assume it to be an exponential function. As the first
step, we observe that the curve passes through roughly (2,−5.5), (2.6,−4), and
(4.75, 11) as the x- and y-axis are log-scaled for T and N , respectively.

2.1 Desktop CASCI: exponential function

Let y be an exponent of two of x, that is,

y = a ∗ 2bx + c. (7)

Note that we use y = 2bx for a simpler interpretation of N. The results re-
main consistent when considering y as an exponential function of x.

Solving for a, b, and c with the observed points, we numerically have

y = 1.03 ∗ 20.901x − 9.13. (8)

2

Then, we have

log10 T = 1.03 ∗ 20.901(log2 N) − 9.13, (9)

=⇒ T= 101.03N
0.901−9.13. (10)

For the R-Squared values to the data and fitting curve, we have 0.9995. The
Python code for this estimation is attached at the end of this section.

3 Intersection between Trotterizatio and Desk-
top CASCI

Utilizing the given estimates to approximate the underlying graphs depicted
in Fig. 3 in [1], we compute the point of intersection between the Trotterization
and CASCI curves.

(100.8)101.97 log2 N = 101.03N
(0.901)−9.13 (11)

We found N ≈ 25.76 and T ≈ 1.13 ∗ 1010. The Python code for this estima-
tion is attached at the end of this section.

Acknowledgements

We would like to express our sincere gratitude to Kung-Chuan(KC) Hsu for
his valuable contributions and for providing the examples and works included
in this appendix.

References

[1] V. E. Elfving et al. How will quantum computers provide an industrially rel-
evant computational advantage in quantum chemistry? 2020. arXiv: 2009.
12472 [quant-ph].

3

Appendix-Codes

April 11, 2023

[1]: import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import r2_score

x_data = np.array([4, 6, 8, 10, 12, 34])
y_data = np.array([10**5, 10**6, 10**6.5, 10**7, 10**8, 10**11])

degree = 1

coefficients = np.polyfit(np.log2(x_data), np.log10(y_data), degree)
polynomial = np.poly1d(coefficients)

print(f"Fitted polynomial: {polynomial}")

Calculate R-squared
y_pred = polynomial(np.log2(x_data))
r_squared = r2_score(np.log10(y_data), y_pred)
print("R-squared value:", r_squared)

fig, ax = plt.subplots()

Plotting the data points
ax.scatter(x_data, y_data, label="Data points")

Plotting the fitted polynomial
x_range = np.linspace(min(x_data), max(x_data), 1000)
y_fitted = 10**polynomial(np.log2(x_range))
ax.plot(x_range, y_fitted, label="Fitted polynomial", color="red")

Set the x-axis to log base 2 scale
ax.set_xscale('log', base=2)

Set the y-axis to log scale (10)
ax.set_yscale('log')

Add labels for the axes
ax.set_xlabel('x_data')

1

ax.set_ylabel('y_data')

Set the title of the figure
ax.set_title('Log-Log Plot of x_data and y_data with Fitted Polynomial')

Display the legend
ax.legend()

Display the figure
plt.show()

Fitted polynomial:
1.97 x + 0.8202
R-squared value: 0.9867653052858756

[2]: import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter

x_data = np.array([4, 6, 10, 14, 18, 23, 27])
y_data = np.array([10**-5.5, 10**-4, 10**-1, 90, 10**5, 10**8, 10**11])

2

x_log2 = np.log2(x_data)
y_log10 = np.log10(y_data)

def model_func(x, c1, c2, c3):
return c1 * 2**(c2 * (x)) + c3

initial_params = (1, 1, 0)
params, _ = curve_fit(model_func, x_log2, y_log10, p0=initial_params,␣

↪→maxfev=10000)

c1, c2, c3 = params
print(f"c1: {c1}, c2: {c2}, c3: {c3}")

fig, ax = plt.subplots()

Plotting the data points
ax.scatter(x_data, y_data, label="Data points")

Plotting the fitted function
x_range = np.linspace(min(x_data), max(x_data), 1000)
y_fitted = model_func(np.log2(x_range), c1, c2, c3)
ax.plot(x_range, 10**y_fitted, label="Fitted function", color="red")

Set the x-axis and y-axis to log scale
ax.set_xscale('log', base=2)
ax.set_yscale('log')

Formatter functions for x-axis and y-axis
x_formatter = FuncFormatter(lambda x, pos: f"{x:.0f}")
y_formatter = FuncFormatter(lambda y, pos: f"{y:.1e}")

Set formatters for x-axis and y-axis labels
ax.xaxis.set_major_formatter(x_formatter)
ax.yaxis.set_major_formatter(y_formatter)

ax.set_xlabel("x")
ax.set_ylabel("y")
ax.legend()
ax.set_title("Data points and fitted function on log-log scale (x-axis log base␣

↪→2)")
plt.show()

Step 1: Calculate the predicted values using the fitted parameters and the␣
↪→model function

y_pred = model_func(x_log2, c1, c2, c3)

Step 2: Compute the residual sum of squares (RSS)

3

rss = np.sum((y_log10 - y_pred)**2)

Step 3: Compute the total sum of squares (TSS)
tss = np.sum((y_log10 - np.mean(y_log10))**2)

Step 4: Calculate the R-squared value using the formula R^2 = 1 - (RSS/TSS)
r_squared = 1 - (rss / tss)

print("R-squared value:", r_squared)

c1: 1.0272065192143498, c2: 0.9015460183549963, c3: -9.126604362730038

R-squared value: 0.9995144955416537

[3]: import numpy as np
from scipy.optimize import fsolve
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter

def CASCI_log(x):
return 1.027 * 2**(0.902 * x) - 9.127

def Trotterization_log(x):
return 1.97*x + 0.8202

4

def intercept(x):
return CASCI_log(x) - Trotterization_log(x)

Initial guess for the x-value at which the functions intersect
x0 = 20

x_intercept = fsolve(intercept, x0)

y_intercept = CASCI_log(x_intercept)

intersection_point = (x_intercept[0], y_intercept[0])
print(f"x-intercept: {x_intercept[0]}, y-intercept: {y_intercept[0]}")

x-intercept: 4.680983654645295, y-intercept: 10.041737799651228

[4]: import numpy as np
from scipy.optimize import fsolve
import matplotlib.pyplot as plt

def CASCI(n):
return 10**(1.027 * (n**0.901) - 9.126)

def Trotterization(n):
return 10**(1.97*np.log2(n) +0.8202)

def intercept(n):
return CASCI(n) - Trotterization(n)

Initial guess for the x-value at which the functions intersect
x0 = 50

N_intercept = fsolve(intercept, x0)

T_intercept = CASCI(N_intercept)

intersection_point = (N_intercept[0], T_intercept[0])
print(f"N-intercept: {N_intercept[0]}, T-intercept: {T_intercept[0]}")

N-intercept: 25.760737798596633, T-intercept: 11318554241.165968

5

	MIT_IDE_derivation
	MIT_IDE (1)

